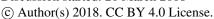
Biogeosciences Discuss., https://doi.org/10.5194/bg-2018-109 Manuscript under review for journal Biogeosciences Discussion started: 20 March 2018

© Author(s) 2018. CC BY 4.0 License.

- 1 Geochemistry of the dissolved loads of rivers in Southeast Coastal Region, China:
- 2 Anthropogenic impact on chemical weathering and carbon sequestration
- Wenjing Liu^{1,2,3}, Zhifang Xu^{1,2,3*}, Huiguo Sun^{1,2,3}, Tong Zhao^{1,2,3}, Chao Shi^{1,2}, Taoze Liu⁴
- 4 ¹ Key Laboratory of Cenozoic Geology and Environment, Institute of Geology and
- 5 Geophysics, Chinese Academy of Sciences, Beijing 100029, China
- 6 ² Institutions of Earth Science, Chinese Academy of Sciences, Beijing 100029, China
- 7 University of Chinese Academy of Sciences, Beijing 100049, China
- 9 Academy of Sciences, Guiyang, Guizhou 550002, China
- * Corresponding author. zfxu@mail.iggcas.ac.cn (Zhifang Xu, Tel: +86 10 82998289)


Manuscript under review for journal Biogeosciences

Discussion started: 20 March 2018

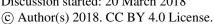
11

32

acid deposition;

Abstract:

12 Southeast coastal region is the most developed and populated area in China. Meanwhile, it has been the most severe acid rain impacted region for many years. The 13 chemical compositions and carbon isotope ratio of dissolved inorganic carbon 14 $(\delta^{13}C_{DIC})$ of rivers were investigated to evaluate the chemical weathering and 15 associated atmospheric CO2 consumption rates. Mass balance calculation indicated 16 17 that the dissolved loads of major rivers in the Southeast Coastal Rivers Basin (SECRB) were contributed by atmospheric (14.4%, 6.6-23.4%), anthropogenic 18 (17.8%, 0-55.2%), silicate weathering (38.3%, 10.7-74.0%) and carbonate weathering 19 inputs (29.4%, 3.9-62.0%). The silicate and carbonate chemical weathering rates for 20 these river watersheds were 10.0-29.6 t km⁻² a⁻¹ and 1.0-54.1 t km⁻² a⁻¹, respectively. 21 22 The associated mean CO₂ consumption rate by silicate weathering for the whole SECRB were 167×10^3 mol km⁻² a⁻¹. The chemical and $\delta^{13}C_{DIC}$ evidences indicated 23 that sulfuric acid (mainly from acid deposition) was significantly involved in chemical 24 25 weathering of rocks. The calculation showed an overestimation of CO₂ consumption at 0.19×10^{12} g C a⁻¹ if sulfuric acid was ignored, which accounted for about 25% of 26 27 the total CO₂ consumption by silicate weathering in the SECRB. This study 28 quantitatively highlights that the role of sulfuric acid in chemical weathering, 29 suggesting that acid deposition should be considered in studies of chemical weathering and associated CO₂ consumption. 30 **Keywords:** Southeast Coastal Rivers Basin; Chemical weathering; CO₂ consumption; 31


Manuscript under review for journal Biogeosciences

Discussion started: 20 March 2018

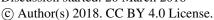
33

34

35

1. Introduction

ecosystems and regulates the level of atmospheric CO2. As a net sink of atmospheric 36 37 CO₂ on geologic timescales, estimation of silicate chemical weathering rates and the controlling factors are important issues related to long-term global climate change 38 39 (e.g. Raymo and Ruddiman, 1992; Négrel et al. 1993; Berner and Caldeira, 1997; 40 Gaillardet et al., 1999; Kump et al., 2000; Amiotte-Suchet et al., 2003; Oliva et al., 41 2003; Hartmann et al., 2009; Moon et al., 2014). As an important component in the 42 Earth's Critical Zone (U.S. Nat. Res. Council Comm., 2001), river serves as an 43 integrator of various natural and anthropogenic processes and products in a basin, and a carrier transporting the weathering products from continent to ocean. Therefore, the 44 chemical compositions of river are widely used to evaluate chemical weathering and 45 associated CO₂ consumption rates at catchment and/or continental scale, and examine 46 47 their controlling factors (e.g., Edmond et al., 1995; Gislason et al., 1996; Galy and France-Lanord, 1999; Huh, 2003; Millot et al., 2002, 2003; Oliva et al., 2003; West et 48 49 al., 2005; Moon et al., 2007; Noh et al., 2009; Shin et al., 2011; Calmels et al., 2011). 50 With the intensification of human activities, human perturbations to river basins 51 have increased in frequency and magnitude. It is important to understand how such perturbations function on the current weathering systems and to predict how they will 52 affect the Critical Zone of the future (Brantley and Lebedeva, 2011). In addition to 53 CO₂, other sources of acidity (such as sulfuric, nitric and organic acids) can also 54


Chemical weathering of rocks is a key process that links geochemical cycling of

solid earth to the atmosphere and ocean. It provides nutrients to terrestrial and marine

Manuscript under review for journal Biogeosciences

Discussion started: 20 March 2018

55

produce protons. These protons react with carbonate and silicate minerals, thus 56 enhance rock chemical weathering rate and flux compared with only considering protons deriving from CO₂ dissolution (Calmels et al., 2007; Xu and Liu, 2010). The 57 effect of other sourced proton (especially H⁺ induced by SO₂ and NO_X coming from 58 59 anthropogenic activities) on chemical weathering is documented to be an important mechanism modifying atmospheric CO2 consumption by rock weathering (Galy and 60 61 France-Lanord, 1999; Semhi, et al., 2000; Spence and Telmer, 2005; Xu and Liu, 2007; Perrin et al., 2008; Gandois et al., 2011). Anthropogenic emissions of SO₂ was 62 projected to provide 3 to 5 times greater H₂SO₄ to the continental surface than the 63 64 pyrite oxidation originated H₂SO₄ (Lerman et al., 2007). Therefore, increasing acid precipitation due to stronger human activities nowadays could make this mechanism 65 66 more prominently. The role of acid precipitation on the chemical weathering and CO₂ consumption 67 has been investigated in some river catchments (Amiotte-Suchet et al., 1995; Probst et 68 69 al., 2000; Vries et al., 2003; Lerman et al., 2007; Xu and Liu, 2010). It has been 70 documented that silicate rocks were more easily disturbed by acid precipitation during 71 their weathering and soil leaching processes, because of their low buffeting capacity 72 (Reuss et al., 1987; Amiotte-Suchet et al., 1995). According to Amiotte-Suchet et al. 73 (1995), especially where crystalline rocks outcrop, the disturbance can be very high and can induce a decrease of CO₂ consumption by weathering at least 73% in the 74 75 Strengbach catchment (Vosges Mountains, France). This highlights the importance of exploring anthropogenic impact on chemical weathering and CO₂ consumption under 76

Manuscript under review for journal Biogeosciences

Discussion started: 20 March 2018

© Author(s) 2018. CC BY 4.0 License.

77 different background (e.g. lithology, climate, human activity intensity, and basin

78 scale) for better constraining and estimation of acid precipitation effect on rock

79 weathering. Asia, especially East Asia, is one of the world's major sulfur emissions

areas. However, the effect of acid precipitation on silicate weathering and associated

CO₂ consumption was not well evaluated in this area, especially lack of quantitative

82 studies.

80

81

89

91

92

93

94

95

83 Southeast coastal region of China is the most highly developed and

84 populated area in China, dominated by Mesozoic magmatic rocks (mainly granite and

85 volcanic rocks) in lithology. Meanwhile, it is also seriously impacted by acid rain,

with a volume-weighted mean value of pH lower than 4.5 for many years (Wang et al.,

87 2000; Larssen and Carmichael, 2000; Zhao, 2004; Han et al., 2006; Larssen et al.,

88 2006; Zhang et al., 2007a; Huang et al., 2008; Xu et al., 2011). Therefore, it is an

ideal area for evaluating silicate weathering and the effect of acid rain. In this study,

90 the chemical and carbon isotope composition of rivers in this area were first

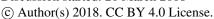
systematically investigated, in order to: (i) decipher the different sources of solutes

and to quantify their contributions to the dissolved loads; (ii) calculate silicate

weathering and associated CO₂ consumption rates; (iii) evaluate the effects of acid

deposition on rock weathering and CO₂ consumption flux.

2. Natural setting of study area


96 Southeast coastal region of China, where the landscape is dominated by

97 mountainous and hilly terrain, has rugged coastlines and develop numerous small and

98 medium river system. Rivers in this region flow eastward or southward and finally

Manuscript under review for journal Biogeosciences

Discussion started: 20 March 2018

99 inject into the East China Sea or the South China Sea (Fig. 1), and they are collectively named as 'Southeast Coastal Rivers' (SECRs). Large rivers are listed here 100 from north to south, they are: Qiantang, Cao'e, Ling, and Ou in Zhejiang province; 101 Jiaoxi, Huotong, Ao, Min, Jin, and Jiulong in Fujian province; Han and Rong in 102 103 Guangdong province. The Southeast Coastal Rivers Basin (SECRB) belongs to the warm and humid 104 105 subtropical oceanic monsoon climate. The average annual temperature and precipitation are 17-21°C and 1400-2000 mm, respectively. The precipitation mainly 106 happens during May to September, and the minimum and maximum temperature 107 often occurs in January and July. This area is one of the most developed areas in 108 China, with a population more than 190 million (mean density of ~470 109 110 individuals/km²), but the population mainly concentrated in the coastal urban areas. The vegetation coverage of these river basins is more than 60%, mainly subtropical 111 evergreen-deciduous broadleaf forest and mostly distributing in mountains area. 112 113 Cultivated land, and industries and cities are mainly located in the plain areas and lower reach of these rivers. 114 115 Geologically, three regional-scale fault zones are distributed across the SECRB 116 region (Fig. 1). They are the sub-EW-trending Shaoxing-Jiangshan fault zone, the 117 NE-trending Zhenghe-Dapu fault zone, and the NE-trending Changle-Nanao fault zone (Shu et al., 2009). These fault zones dominate the direction of the mountains 118 ridgelines and drainages, as well as the formation of the basins and bay. The Zhenghe-119 120 Dapu fault zone is a boundary line of Caledonian uplift belt and Hercynian-Indosinian

Manuscript under review for journal Biogeosciences

Discussion started: 20 March 2018 © Author(s) 2018. CC BY 4.0 License.

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

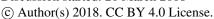
138

139

140

141

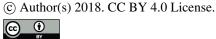
142


depression zone. Mesozoic magmatic rocks are widespread in the southeast coastal region with a total outcrop area at about 240,000 km². Over 90% of the Mesozoic magmatic rocks are granitoids (granites and rhyolites) and their volcanic counterpart with minor existence of basalts (Zhou et al., 2000, 2006; Bai et al., 2014). These crustderived granitic rocks are mainly formed in the Yanshanian stage, and may have been related to multiple collision events between Cathaysia and Yangtze blocks. Among the major river basins, the proportions of magmatic rocks outcrop are about 36% in Qiantang river basin, above 80% in Ou, Jiaoxi and Jin river basins, and around 60% in Min, Jiulong, Han and Rong river basins (Shi, 2014). The overlying Quaternary sediment in this area is composed of brown-yellow siltstones but is rarely developed. The oldest basement complex is composed of metamorphic rocks of greenschist and amphibolite facies. Sedimentary rocks categories into two types, one is mainly composed by red clastic rocks which cover more than 40,000 km² in the study area; the other occurs as interlayers within volcanic formations, including varicolored mudstones and sandstones. They are mainly distributed on the west of Zhenghe-Dapu fault zone (FJBGRM, 1985; ZJBGMR, 1989; Shu et al., 2009).

3. Sampling and analytical method

Water samples were collected during the high-flow season of 2010 (sample number and locations are shown in Fig. 1). 2-L water samples were collected in the middle channel of the river from bridges or ferries, or directly from the center of some shallow streams in the source area. The lower reaches sampling sites were selected distant away from the estuary to avoid the influence of seawater. Temperature (T), pH

Manuscript under review for journal Biogeosciences


Discussion started: 20 March 2018

143 and electrical conductivity (EC) were measured in the field with a portable EC/pH 144 meter (YSI-6920, USA). All of the water samples for chemical analysis were filtered in field through 0.22 µm Millipore membrane filter, and the first portion of the 145 filtration was discarded to wash the membrane and filter. One portion filtrate were 146 147 stored directly in HDPE bottles for anion analysis and another were acidified to pH <2 with 6M double sub-boiling distilled HNO₃ for cation analysis. All containers were 148 149 previously washed with high-purity HCl and rinsed with Milli-Q 18.2 M Ω water. Alkalinity was titrated with 0.005M HCl within 12 h after sampling. Cations 150 (Na⁺, K⁺, Ca²⁺ and Mg²⁺) were determined using Inductively Coupled Plasma Atomic 151 Emission Spectrometer (ICP-AES) (IRIS Intrepid II XSP, USA). Anions (Cl, F, 152 NO₃ and SO₄²) were analyzed by ionic chromatography (IC) (Dionex Corporation, 153 154 USA). Dissolved silica was determined by spectrophotometry using the molybdate blue method. Reagent and procedural blanks were measured in parallel to the sample 155 treatment, and calibration curve was evaluated by quality control standards before, 156 157 during and after the analyses of each batch of samples. Measurement reproducibility was determined by duplicated sample and standards, which showed $\pm 3\%$ precision for 158 159 the cations and $\pm 5\%$ for the anions. River water samples for carbon isotopic ratio (δ^{13} C) of dissolved inorganic 160 carbon (DIC) measurements were collected in 150 ml glass bottles with air-tight caps 161 and preserved with HgCl₂ to prevent biological activity. The samples were kept 162 refrigerated until analysis. For the δ^{13} C measurements, the filtered samples were 163 injected into glass bottles with phosphoric acid. The CO2 was then extracted and 164

165 cryogenically purified using a high vacuum line. δ^{13} C isotopic ratios were analyzed on

166 Finnigen MAT-252 stable isotope mass spectrometer at the State Key Laboratory of

167 Environmental Geochemistry, Chinese Academy of Sciences. The results are

168 expressed with reference to VPDB, as follows:

169
$$\delta^{13}C = \left[\left(\binom{13}{C} \binom{12}{C} \right)_{\text{sample}} / \binom{13}{C} \binom{12}{C} \right)_{\text{standard}} - 1 \times 1000$$
 (1)

The δ^{13} C measurement has an overall precision of 0.1‰. A number of duplicate

171 samples were measured and the results show that the differences were less than the

172 range of measurement accuracy.

4. Results

173

186

The major parameter and ion concentrations of samples are given in Table 1. The

pH values of water samples ranged from 6.50 to 8.24, with an average of 7.23. Total

dissolved solids (TDS) of water samples varied from 35.3 to 205 mg l^{-1} , with an

average of 75.2 mg l⁻¹. Comparing with the major rivers in China, the average TDS

was significantly lower than Changjiang (224 mg l⁻¹, Chetelat et al., 2008), Huanghe

179 (557 mg Γ^1 , Fan et al., 2014) and Zhujiang (190 mg Γ^1 , Zhang et al., 2007b).

180 However, the average TDS was comparable to the rivers draining silicate rock

dominated areas, e.g. the upper Ganjiang (63 mg Γ^1 , Ji and Jiang, 2012), the Amur (70

 $182 \text{ mg } 1^{-1}$, Moon et al., 2009), Xishui (101 mg 1^{-1} , Wu et al., 2013), and north Han river in

South Korea (75.5 mg l⁻¹, Ryu et al., 2008). Among the major rivers in the SECRB,

the Qiantang river had the highest TDS value (averaging at 121 mg Γ^1), and the Ou

river had the lowest TDS value (averaging at 48.8 mg l⁻¹).

Major ion compositions are shown in the cation and anion ternary diagrams (Fig.

Manuscript under review for journal Biogeosciences

5. Discussion

206

207

208

Discussion started: 20 March 2018

© Author(s) 2018. CC BY 4.0 License.

187 2a and b). In comparison with rivers (e.g. the Wujiang and Xijiang) draining carbonate rocks dominated area (Han and Liu, 2004; Xu and Liu, 2010), these rivers 188 in the SECRB have distinctly higher proportions of Na⁺, K⁺, and dissolved SiO₂. As 189 shown in the Fig. 2, most samples have high Na⁺ and K⁺ proportions, with an average 190 higher than 50% (in µmol 1-1) of the total cations, except for samples from the 191 192 Qiantang river. The concentrations of Na⁺ and K⁺ range from 43.5 to 555 µmol 1⁻¹ and 42.9 to 233 µmol 1⁻¹, with average values of 152 and 98 µmol 1⁻¹, respectively. The 193 concentrations of dissolved SiO₂ range from 98.5 to 370 µmol I⁻¹, with an average of 194 212 µmol l⁻¹. Ca²⁺ and Mg²⁺ account for about 38% and 11.6% of the total cation 195 concentrations. HCO₃ is the dominant anion with concentrations ranging from 139 to 196 1822 µmol l⁻¹. On average, it comprises 60.6% (36-84.6%) of total anions on a molar 197 basis, followed by SO_4^{2-} (14.6%), Cl (13.1%) and NO_3^{-} (11.8%). The major ionic 198 compositions indicate that water chemistry of these rivers in the SECRB is controlled 199 by silicate weathering. Meanwhile, it is also influenced by carbonate weathering, 200 201 especially in the Qiantang river system. The δ^{13} C of dissolved inorganic carbon in the rivers of the SECRB are given in 202 203 Table 1. The δ^{13} C of the water samples show a wide range, from -11.0% to -24.3% 204 (average -19.4%), and with majority falling between -15 of -23%. The values are 205 similar to most rivers draining Deccan Traps (Das et al., 2005).

anthropogenic inputs and weathering of rocks within the drainage basin. It is

The dissolved solids in river water are commonly from atmospheric and

Manuscript under review for journal Biogeosciences

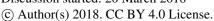
Discussion started: 20 March 2018 © Author(s) 2018. CC BY 4.0 License.

209 necessary to quantify the contribution of different sources to the dissolved loads 210 before deriving chemical weathering rates and associated CO₂ consumption. 211 5.1 Atmospheric and anthropogenic inputs To evaluate atmospheric inputs to river waters, chloride is the most common 212 213 used reference. Generally, water samples that have the lowest Cl concentrations are employed to correct the proportion of atmospheric inputs in a river system (Négrel et 214 215 al., 1993; Gaillardet et al., 1997; Viers et al., 2001; Xu and Liu, 2007). In pristine 216 areas, the concentration of Cl in river water is assumed to be entirely derived from 217 the atmosphere, provided that the contribution of evaporites is negligible. In the 218 SECRB, the lowest Cl concentration was mainly found in the headwater of each river. According to the geologic setting, no salt-bearing rocks was found in these 219 220 headwater area (FJBGRM, 1985; ZJBGMR, 1989). In addition, these areas are mainly mountainous and sparsely populated. Therefore, we assumed that the lowest Cl 221 222 concentration of samples from the headwater of each major river came entirely from 223 atmosphere. 224 The proportion of atmosphere-derived ions in the river waters can then be 225 calculated by using the element/Cl ratios of the rain. Chemical compositions of rain in 226 the studied area have been reported at different sites, including Hangzhou, Jinhua, 227 Nanping, Fuzhou and Xiamen (Zhao, 2004; Zhang et al., 2007a; Huang et al., 2008; Cheng et al., 2011; Xu et al., 2011) (Fig. 1). The volume-weighted mean 228 concentration of ions and Cl-normalized molar ratios are compiled in Table 2. 229 230 According to this procedure, 6.6-23.4% (averaging 14.4%) of total dissolved cations

Manuscript under review for journal Biogeosciences

Discussion started: 20 March 2018

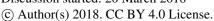
© Author(s) 2018. CC BY 4.0 License.



in the major rivers of the SECRB originated from rain. Among the anions, SO_4^{2-} and 231 NO₃ in the rivers are mainly from the atmospheric input, averaging at 74.7% for 232 SO₄² and 68.6% for NO₃, respectively. 233 As the most developed and populated areas in China, the chemistry of rivers in 234 the SECRB could be significantly impacted by anthropogenic inputs. Cl⁻, NO₃⁻ and 235 SO₄² are commonly associated with anthropogenic sources and have been used as 236 tracers of anthropogenic inputs in watershed. High concentrations of Cl⁻, NO₃⁻ and 237 SO₄²⁻ can be found at the lower reaches of rivers in the SECRB, and an obvious 238 increase after flowing through plain areas and city. This tendency indicates that river 239 water chemistry is affected by anthropogenic inputs while passing through the 240 catchments. After correcting for the atmospheric contribution to river waters, the 241 242 following assumption is needed to quantitatively estimate the contributions of anthropogenic inputs. That is, Cl originates from only atmospheric and anthropogenic 243 inputs, the excess of atmospheric Cl is regarded to present anthropogenic inputs and 244 245 balanced by Na. 246 5.2 Chemical weathering inputs 247 Water samples were displayed on a plot of Na-normalized molar ratios (Fig. 3). 248 The values of the world's large rivers (Gaillardet et al. 1999) are also shown for 249 comparison in the figure. A best correlations between elemental ratios were observed for Ca^{2+}/Na^{+} vs. Mg^{2+}/Na^{+} ($R^{2} = 0.95$, n = 120) and Ca^{2+}/Na^{+} vs. HCO_{3}^{-}/Na^{+} ($R^{2} = 0.95$) 250 0.98, n = 120). The samples cluster on a mixing line mainly between silicate and 251 252 carbonate end members, closer to the silicate end-member, and with little evaporite

Manuscript under review for journal Biogeosciences

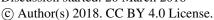
Discussion started: 20 March 2018



253 contribution. This corresponds with the distribution of rock types in the SECRB. In addition, all water samples have equivalent ratios of (Na⁺+K⁺)/Cl larger than one, 254 indicating silicate weathering as the source of Na⁺ and K⁺ rather than chloride 255 evaporites dissolution. 256 257 The geochemical characteristics of the silicate and carbonate end-members can be deduced from the correlations between elemental ratios and referred to literature 258 259 data for catchments with well-constrained lithology. After correction for atmospheric inputs, the Ca²⁺/Na⁺, Mg²⁺/Na⁺ and HCO₃⁻/Na⁺ of the river samples ranged from 0.31 260 to 30, 0.16 to 6.7, and 1.1 to 64.2, respectively. According to the geological setting 261 (Fig. 1), there are some small rivers draining purely silicate areas in the SECRs 262 drainage basins. Based on the elemental ratios of these rivers, we assigned the silicate 263 end-member for this study as $Ca^{2+}/Na^{+}=0.41\pm0.10$, $Mg^{2+}/Na^{+}=0.20\pm0.03$ and HCO_3^{-} 264 $/Na^{+}=1.7\pm0.6$. The ratio of $(Ca^{2+}+Mg^{2+})/Na^{+}$ for silicate end-member was 0.61, which 265 is close to the silicate end-member of world rivers ((Ca²⁺+Mg²⁺)/Na⁺=0.59±0.17, 266 267 Gaillardet et al., 1999). Moreover, several previous researches have documented the chemical composition of rivers, such as the Amur and the Songhuajiang in North 268 269 China, the Xishui in the lower reaches of the Changjiang, and major rivers in South 270 Korea (Moon et al., 2009; Liu et al., 2013; Wu et al., 2013; Ryu et al., 2008; Shin et 271 al., 2011). These river basins has similar geological setting with the study area, we could further validate the composition of silicate end-member with their results. 272 Ca²⁺/Na⁺ and Mg²⁺/Na⁺ ratios of silicate end-member were reported for the Amur 273 274 (0.36 and 0.22), the Songhuajiang $(0.44\pm0.23 \text{ and } 0.16)$, the Xishui $(0.6\pm0.4 \text{ and } 0.16)$

Manuscript under review for journal Biogeosciences

Discussion started: 20 March 2018



275 0.32±0.18), the Han (0.55 and 0.21) and six major rivers in South Korea (0.48 and 0.20) in the studies above, well bracketing our estimation for silicate end-member. 276 Whereas, some samples show high concentrations of Ca²⁺, Mg²⁺ and HCO₃, 277 indicating the contribution of carbonate weathering. The samples collected in the 278 279 upper reaches (Sample 12 and 13) in the Qiantang river fall close to the carbonate end-member documented for world large rivers (Gaillardet et al., 1999). In the present 280 study, Ca²⁺/Na⁺ ratio of 0.41±0.10 and Mg²⁺/Na⁺ ratio of 0.20±0.03 for silicate end-281 member are used to calculate the contribution of Ca2+ and Mg2+ from silicate 282 weathering. Finally, residual Ca²⁺ and Mg²⁺ are apportioned to carbonate weathering. 283 5.3 Chemical weathering rate in the SECRBs 284 285 Based on the above assumption, a forward model is employed to quantify the 286 relative contribution of the different sources to the rivers of the SECRB in this study. (e.g. Galy and France-Lanord, 1999; Moon et al., 2007; Xu and Liu, 2007; 2010; Liu 287 et al., 2013). The calculated contributions of different reservoir to the total cationic 288 289 loads for large rivers and their major tributaries in the SECRB are presented in Fig. 4. 290 On average, the dissolved cationic loads of the rivers in the study area originate dominantly from silicate weathering, which accounts for 38.3% (10.7-74.0%) of the 291 292 total cationic loads in molar unit. Carbonate weathering and anthropogenic inputs 293 account for 29.4% (3.9-62.0%) and 17.8% (0-55.2%), respectively. Contributions from silicate weathering are high in the Ou (55.7%), Huotong (55%), Ao (48%) and 294 Min (48.4%) river catchments, which dominated by granitic and volcanic bedrocks. In 295 contrast, high contribution from carbonate weathering is observed in the Qiantang 296

Manuscript under review for journal Biogeosciences

Discussion started: 20 March 2018

- 297 (56.6%) and Jiulong (38.5%) river catchments. The results manifest the lithology
- 298 control on river solutes of drainage basin.
- The chemical weathering rate of rocks is estimated by the mass budget, basin
- area and annual discharge, expressed in ton km⁻² a⁻¹. The silicate weathering rate
- 301 (SWR) is calculated using major cationic concentrations from silicate weathering and
- 302 assuming that all dissolved SiO₂ is derived from silicate weathering (Xu and Liu,
- 303 2010), as the equation below:

$$SWR = ([Na]_{sil} + [K]_{sil} + [Ca]_{sil} + [Mg]_{sil} + [SiO_2]_{riv}) \times discharge/area \qquad (2)$$

- The assumption about Si could lead to overestimation of the silicate weathering
- 306 rate, as part of silica may come from dissolution of biogenic sources rather than the
- 307 weathering of silicate minerals (Millot et al., 2003; Shin et al., 2011). Thus, the
- 308 cationic silicate weathering rates (Cat_{sil}) were also calculated.
- The carbonate weathering rate (CWR) is calculated based on the sum of Ca²⁺,
- 310 Mg²⁺ and HCO₃ from carbonate weathering, with half of the HCO₃ coming from
- 311 carbonate weathering being derived from the atmosphere CO₂, as the equation below:

312
$$CWR = ([Ca]_{carb} + [Mg]_{carb} + 1/2[HCO_3]_{carb}) \times discharge/area$$
 (3)

- The chemical weathering rates and fluxes are calculated for major rivers and
- 314 their main tributaries in the SECRB, and the results are shown in Table 3. Silicate and
- 315 carbonate weathering fluxes of these rivers (SWF and CWF) range from 0.02×10^6 t a
- 316 $^{-1}$ to 1.29×10^6 t a^{-1} , and from 0.002×10^6 t a^{-1} to 1.33×10^6 t a^{-1} , respectively. Among the
- 317 rivers, Min river has the highest silicate weathering flux, and Qiantang river has the
- 318 highest carbonate weathering flux. On the whole SECRB scale, 5.23×10⁶ t a⁻¹ and

- 4.90×10^6 t a⁻¹ of dissolved solids originating from silicate and carbonate weathering,
- 320 respectively, are transported into the East and South China Sea by rivers in this
- 321 region. Comparing with three largest three river basins (Changjiang, Huanghe and
- 322 Xijiang) in China, the flux of silicate weathering calculated for the SECRB is lower
- 323 than Changjiang (9.5×10⁶ t a⁻¹, Gaillardet et al. 1999), but higher than Huanghe
- 324 $(1.52 \times 10^6 \text{ t a}^{-1})$, Fan et al., 2014) and Xijiang $(2.62 \times 10^6 \text{ t a}^{-1})$, Xu and Liu, 2010).
- 325 The silicate and carbonate chemical weathering rates for these river watersheds
- 326 were 10.0-29.6 t km⁻² a^{-1} and 1.0-54.1 t km⁻² a^{-1} , respectively. The total rock
- weathering rate (TWR) for the whole SECRB is 35.3 ton km⁻² a⁻¹, higher than the
- 328 world average (24 ton km⁻² a⁻¹, Gaillardet et al., 1999). The cationic silicate
- weathering rates (Cat_{sil}) ranges from 2.4 to 10.8 ton km⁻² a⁻¹ for the river watersheds
- in the SECRB, averaging at 6.0 ton km⁻² a⁻¹. Furthermore, a good linear correlation
- 331 $(R^2 = 0.85, n = 28)$ is observed between the Cat_{sil} and runoff (Fig. 5), indicating
- 332 silicate weathering rates is controlled by the runoff as documented in previous
- researches (e.g., Bluth and Kump, 1994; Gaillardet et al., 1999; Millot et al., 2002;
- 334 Oliva et al., 2003; Wu et al., 2013; Pepin et al., 2013).
- 335 5.4 CO₂ consumption and the role of sulfuric acid
- To calculate atmospheric CO₂ consumption by silicate weathering (CSW) and by
- 337 carbonate weathering (CCW), a charge-balanced state between rock chemical
- weathering-derived alkalinity and cations was assumed (Roy et al., 1999).

339
$$[CO_2]_{CSW} = [HCO_3]_{CSW} = [Na]_{sil} + [K]_{sil} + 2[Ca]_{sil} + 2[Mg]_{sil}$$
(4)

$$[CO_2]_{CCW} = [HCO_3]_{CCW} = [Ca]_{carb} + [Mg]_{carb}$$
 (5)

Manuscript under review for journal Biogeosciences

Discussion started: 20 March 2018

341

342

343

344

345

346

347

348

349

350

351

352

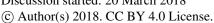
353

354

355

356

357

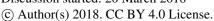

358

359

360

361

362

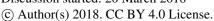


The calculated CO₂ consumption rates by chemical weathering for each river in SECRB are shown in Table 3. CO₂ consumption rates by carbonate and silicate weathering are from 11.6 to 550×10^3 mol km⁻² a⁻¹ (averaging at 166×10^3 mol km⁻² a⁻¹) and from 67.1 to 417×10^3 mol km⁻² a⁻¹ (averaging at 214×10^3 mol km⁻² a⁻¹) for major river catchments in the SECRB. The regional fluxes of CO2 consumption by silicate and carbonate weathering is about 63.6×10^9 mol a⁻¹ $(0.76 \times 10^{12} \text{ g C a}^{-1})$ and 50.4×10^9 mol a^{-1} (0.0.60×10¹² g C a^{-1}) in the SECRB. However, in addition to CO₂, H₂SO₄ is well documented as a significant proton provider in rock weathering process (Galy and France-Lanord, 1999; Karim and Veizer, 2000; Yoshimura et al., 2001; Han and Liu, 2004; Spence and Telmer, 2005; Lerman and Wu, 2006; Xu and Liu 2007; 2010). Sulfuric acid can be generated by natural oxidation of pyrite and anthropogenic emissions of SO₂ from coal combustion and subsequently dissolve carbonate and silicate minerals. The consumption of CO₂ by rock weathering would be overestimated if H₂SO₄ induced rock weathering is ignored (Spence and Telmer, 2005; Xu and Liu, 2010; Shin et al., 2011). Thus, the role of sulfuric acid on the chemical weathering is crucial for an accurate estimation of CO₂ consumption by rock weathering. Rapid economic growth and increased energy command have result in severe air pollution problems in China, indicated by the high levels of mineral acids (predominately sulfuric) observed in precipitation (Lassen and Carmichael, 2000; Pan et al., 2013; Liu et al., 2016). The national SO₂ emissions in 2010 reached to 30.8 Tg/year (Lu et al., 2011). Previous study documented that fossil fuel combustion

Manuscript under review for journal Biogeosciences

Discussion started: 20 March 2018

363

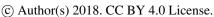

364 Southeast coastal region is the most severe acid rain polluted region in China, with a volume-weighted mean value of pH lower than 4.5 for many years (Wang et al., 2000; 365 Larssen and Carmichael, 2000; Zhao, 2004; Larssen et al., 2006). Current sulfur and 366 367 nitrogen depositions in the Southeast coastal region are still among the highest in China (Fang et al., 2013; Cui et al., 2014; Liu et al., 2016). 368 369 The involvement of protons originating from H₂SO₄ in the river waters can be 370 verified by the stoichiometry between cations and anions, shown in Fig. 6. In the rivers of the SECRB, the sum cations released by silicate and carbonate weathering 371 were not balanced by either HCO₃ or SO₄² (Fig. 6a), but were almost balanced by the 372 373 sum of HCO₃ and SO₄² (Fig. 6b). This implies that both H₂CO₃ and H₂SO₄ are the potential erosion agents in chemical weathering in the SECRB. The δ^{13} C values of the 374 water samples show a wide range, from -11.0% to -24.3%, with an average of -375 19.4%. The δ^{13} C from soil is governed by the relative contribution from C₃ and C₄ 376 377 plant (Das et al., 2005). The studied areas have subtropical temperatures and humidity, and thus C_3 processes are dominant. The $\delta^{13}C$ of soil CO_2 is derived 378 379 primarily from δ^{13} C of organic material which typically has a value of -24 to -34‰, 380 with an average of -28% (Faure, 1986). According to previous studies, the average 381 value for C₃ trees and shrubs are from -24.4 to -30.5‰, and most of them are lower than -28% in south China (Chen et al., 2005; Xiang, 2006; Dou et al., 2013). After 382 accounting for the isotopic effect from diffusion of CO₂ from soil, the resulting δ^{13} C 383 384 (from the terrestrial C_3 plant process) should be ~ -25% (Cerling et al., 1991). This

accounts for the dominant sulfur deposition (~77%) in China (Liu et al., 2016).

Manuscript under review for journal Biogeosciences

Discussion started: 20 March 2018

385

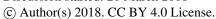


would yield a δ^{13} C value of -25%. Carbonate rocks are generally derived from marine 386 system and, typically, have $\delta^{13}C$ value close to zero. Thus, the theoretical $\delta^{13}C$ value 387 of DIC derived from carbonate weathering by carbonic acid (50% from soil CO2 and 388 50% from carbonate rocks) is -12.5%. DIC derived from carbonate weathering by 389 sulfuric acid are all from carbonate rocks, thus the δ^{13} C of the DIC would be 0%. 390 391 Based on these conclusions, sources of riverine DIC from different end-members in the SECRB were plotted in Fig. 7. Most water samples drift away from the three 392 endmember mixing area (carbonate and silicate weathering by carbonic acid and 393 carbonate weathering by sulfuric acid) and towards the silicate weathering by H₂SO₄ 394 395 area, clearly illustrating the effect of sulfuric acid on silicate weathering. 396 Considering the H₂SO₄ effect on chemical weathering, CO₂ consumption by silicate weathering can be determined from the equation below (Moon et al., 2007; 397 Ryu et al., 2008; Shin et al., 2011): 398 399 $[CO_2]_{SSW} = [Na]_{sil} + [K]_{sil} + 2[Ca]_{sil} + 2[Mg]_{sil} - \gamma \times 2[SO_4]_{atmos}$ (6) Where γ is calculated by cation_{sil}/(cation_{sil} + cation_{carb}). 400 Based on the calculation in section 5.1, SO_4^{2-} in river waters were mainly derived 401 402 from atmospheric input. Assuming sulfate in rivers derived from atmospheric input 403 (after correction for sea-salt contribution) are all from acid precipitation, CO2 consumption rates by silicate weathering (SSW) are estimated between 31.8×10³ mol 404 km⁻² a⁻¹ and 363×10³ mol km⁻² a⁻¹ for major river watersheds in the SECRB. For the 405 whole SECRB, the actual CO₂ consumption rates by silicate is 167×10³ mol km⁻² a⁻¹ 406

mean DIC derived from silicate weathering by carbonic acid (100% from soil CO₂)

Manuscript under review for journal Biogeosciences

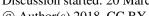
Discussion started: 20 March 2018


when the effect of H₂SO₄ is considered. The flux of CO₂ consumption is overestimated by 15.8×10⁹ mol a⁻¹ (0.19×10¹² g C a⁻¹) due to the involvement of sulfuric acid from acid precipitation, accounting for approximately 24.9% of total CO₂ consumption flux by silicate weathering in the SECRB. It highlights the fact that the drawdown of atmospheric CO₂ by silicate weathering can be significantly overestimated if acid deposition is ignored in short- and long-term perspectives. The result is important as it quantitatively shows that anthropogenic activities can significantly affect rock weathering and associated atmospheric CO₂ consumption. The quantification of this effect needs to be well evaluated in Asian and global scale within the current and future human activity background.

6. Conclusions

River waters in the Southeast coastal region of China are characterized by high proportions of Na^+ , K^+ and dissolved SiO_2 , indicating water chemistry of the rivers in the SECRB is mainly controlled by silicate weathering. The dissolved cationic loads of the rivers in the study area originate dominantly from silicate weathering, which accounts for 38.3% (10.7-74.0%) of the total cationic loads. Carbonate weathering, atmospheric and anthropogenic inputs account for 29.4% (3.9-62.0%), 14.4% (6.6-23.4%) and 17.8% (0-55.2%), respectively. Meanwhile, more than 70% of $SO_4^{2^-}$ in the rivers derived from atmospheric input. The chemical weathering rate of silicates and carbonates for the whole SECRB are estimated to be approximately 18.2 and 17.1 ton km⁻² a⁻¹. About 10.1×10^6 t a⁻¹ of dissolved solids originating from rock weathering are transported into the East and South China Sea by these rivers. With the

Manuscript under review for journal Biogeosciences


Discussion started: 20 March 2018

429 assumption that all the protons involved in the weathering reaction are provided by carbonic acid, the CO₂ consumption rates by silicate and carbonate weathering are 430 222 and 176×10³ mol km⁻² a⁻¹, respectively. However, both water chemistry and 431 carbon isotope data provide evidence that sulfuric acid from precipitation serves as a 432 significant agent during chemical weathering. Considering the effect of sulfuric acid, 433 the CO₂ consumption rate by silicate weathering for the SECRB are 167×10^3 mol km⁻¹ 434 ² a⁻¹. Therefore, the CO₂ consumption flux would be overestimated by 15.8×10⁹ mol a⁻¹ 435 ¹ (0.19×10¹² g C a⁻¹) in the SECRB if the effect of sulfuric acid is ignored. This work 436 illustrates that anthropogenic disturbance by acid precipitation has profound impact 437 on CO₂ sequestration by rock weathering. 438 Acknowledgements. This work was financially supported by Natural Science 439 440 Foundation of China (Grant No. 41673020, 91747202, 41772380 and 41730857) and the "Strategic Priority Research Program" of the Chinese Academy of Sciences (Grant 441 No. XDB15010405) 442 **References:** 443 Amiotte-Suchet, P., Probst, A. Probst, J.-L., Influence of acid rain on CO₂ 444 445 consumption by rock weathering: local and global scales. Water Air Soil Pollut. 446 85, 1563-1568, 1995. 447 Amiotte-Suchet, P., Probst, J.-L. Ludwig, W., Worldwide distribution of continental rock lithology: implications for the atmospheric/soil CO₂ uptake by continental 448 weathering and alkalinity river transport to the oceans. Global Biogeochem. 449 450 Cycles 17, 1038-1052, 2003.

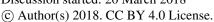
451 Bai, H., Song, L.S., Xia, W.P., Prospect analysis of hot dry rock (HDR) in Eastern part 452 of Jiangxi province, Coal Geol. China 26, 41-44. (In Chinese), 2014. Berner, R.A., Caldeira, K., The need for mass balance and feedback in the 453 geochemical carbon cycle. Geology 25, 955-956, 1997. 454 455 Bluth, G.J.S., Kump, L.R., Lithological and climatological controls of river chemistry. Geochim. Cosmochim. Acta 58, 2341-2359, 1994. 456 457 Brantley, S.L., Lebedeva, M., Learning to read the chemistry of regolith to understand 458 the Critical Zone. Annual Review of Earth and Planetary Sciences, 39: 387-416, 459 2011. Calmels, D., Gaillardet, J., Brenot, A., France-Lanord, C., Sustained sulfide oxidation 460 by physical erosion processes in the Mackenzie River basin: climatic 461 462 perspectives. Geology 35, 1003-1006, 2007. Calmels, D., Galy, A., Hovius, N., Bickle, M., West, A.J., Chen, M.-C., Chapman, H., 463 Contribution of deep groundwater to the weathering budget in a rapidly eroding 464 mountain belt, Taiwan. Earth Planet. Sci. Lett. 303, 48-58, 2011. 465 Cerling, T.E., Solomon, D.K., Quade, J., Bownman, J.R., On the isotopic composition 466 467 of soil CO₂. Geochim. Cosmochim. Acta 55, 3403–3405, 1991. Chen, Q., Shen, C., Sun, Y., Peng, S., Yi, W., Li Z., Jiang, M., Spatial and temporal 468 469 distribution of carbon isotopes in soil organic matter at the Dinghushan Biosphere Reserve, South China. Plant and Soil, 273: 115–128, 2005. 470 Cheng, Y., Liu, Y., Huo, M., Sun, Q., Wang, H., Chen, Z., Bai, Y., Chemical 471 472 characteristics of precipitation at Nanping Mangdang Mountain in eastern China

Manuscript under review for journal Biogeosciences

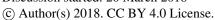
Discussion started: 20 March 2018

473

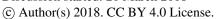
© Author(s) 2018. CC BY 4.0 License.


474 Chetelat, B., Liu, C., Zhao, Z., Wang, O., Li, S., Li, J., Wang, B., Geochemistry of the 475 dissolved load of the Changjiang Basin rivers: anthropogenic impacts and chemical weathering. Geochim. Cosmochim. Acta 72, 4254-4277, 2008. 476 477 Cui, J., Zhou, J., Peng, Y., He, Y., Yang, H., Mao, J., Atmospheric wet deposition of nitrogen and sulfur to a typical red soil agroecosystem in Southeast China 478 479 during the ten-year monsoon seasons (2003-2012). Atmos. Environ. 82, 121-129, 2014. 480 481 Das, A., Krishnaswami, S., Sarin, M.M., Pande, K., Chemical weathering in the Krishna Basin and Western Ghats of the Deccan Traps, India: Rates of basalt 482 weathering and their controls. Geochim. Cosmochim. Acta 69(8), 2067-2084, 483 484 2005. Dou, X., Deng, Q., Li, M., Wang, W., Zhang, Q., Cheng, X., Reforestation of Pinus 485 massoniana alters soil organic carbon and nitrogen dynamics in eroded soil in 486 487 south China. Ecological Engineering 52, 154-160, 2013. Edmond, J.M., Palmer, M.R., Measures, C.I., Grant, B., Stallard, R.F., The fluvial 488 489 geochemistry and denudation rate of the Guayana Shield in Venezuela, 490 Colombia, and Brazil. Geochim. Cosmochim. Acta 59, 3301-3325, 1995. 491 Fan, B.L, Zhao, Z.Q., Tao, F.X., Liu, B.J., Tao, Z.H., Gao, S., He, M.Y., Characteristics of carbonate, evaporite and silicate weathering in Huanghe River 492 basin: A comparison among the upstream, midstream and downstream. J. Asian 493 494 Earth Sci. 96, 17-26, 2014.

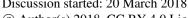
during spring. J. Environ. Sci. 23, 1350-1358, 2011.


495 Fang, Y., Wang, X., Zhu, F., Wu, Z., Li, J., Zhong, L., Chen, D., Yoh, M., Threedecade changes in chemical composition of precipitation in Guangzhou city, 496 southern China: has precipitation recovered from acidification following 497 sulphur dioxide emission control? Tellus B 65, 1-15, 2013. 498 499 Faure, G., Principles of Isotope Geology. Wiley, Toronto, pp. 492-493, 1986. FJBGMR: Fujian Bureau of Geology and Mineral Resources, Regional Geology of 500 501 Fujian Province. Geol. Publ. House, Beijing, p. 671 (in Chinese with English 502 abstract), 1985. Gaillardet, J., Dupré, B., Allègre, C.J., Négrel, P., Chemical and physical denudation 503 in the Amazon River basin. Chem. Geol. 142, 141-173, 1997. 504 Gaillardet, J., Dupré, B., Louvat, P., Allegre, C.J., Global silicate weathering and CO2 505 506 consumption rates deduced from the chemistry of large rivers. Chem. Geol. 159, 3-30, 1999. 507 Galy, A., France-Lanord, C., Weathering processes in the Ganges-Brahmaputra basin 508 509 and the riverine alkalinity budget. Chem. Geol. 159, 31-60, 1999. Gandois, L., Perrin, A.-S., Probst, A., Impact of nitrogenous fertilizer-induced proton 510 511 release on cultivated soils with contrasting carbonate contents: A column 512 experiment. Geochim. Cosmochim. Acta 75, 1185-1198, 2011. 513 Gislason, S.R., Arnorsson, S., Armannsson, H., Chemical weathering of basalt in southwest Iceland: effects of runoff, age of rocks and vegetative/glacial cover. 514 Am. J. Sci. 296, 837-907, 1996. 515 516 Han, G., Liu, C.Q., Water geochemistry controlled by carbonate dissolution: a study

517 of the river waters draining karst-dominated terrain, Guizhou Province, China. Chem. Geol. 204, 1-21, 2004. 518 519 Han, Z.W., Ueda, H., Sakurai, T., Model study on acidifying wet deposition in East Asia during wintertime. Atmos. Environ. 40, 2360-2373, 2006. 520 521 Hartmann, J., Jansen, N., Dürr, H.H., Kempe, S., Köhler, P., Global CO₂ consumption by chemical weathering: what is the contribution of highly active weathering 522 523 regions? Global Planet. Change 69, 185-194, 2009. Huang, K., Zhuang, G., Xu, C., Wang Y., Tang A., The chemistry of the severe acidic 524 precipitation in Shanghai, China. Atmos. Res. 89, 149-160, 2008. 525 Huh, Y.S., Chemical weathering and climate - a global experiment: a review. Geosci. 526 527 J. 7, 277-288, 2003. 528 Ji, H., Jiang, Y., Carbon flux and C, S isotopic characteristics of river waters from a karstic and a granitic terrain in the Yangtze River system. J. Asian Earth Sci. 57, 529 38-53, 2012. 530 531 Karim, A., Veizer, H.E., Weathering processes in the Indus River Basin: implication from riverine carbon, sulphur, oxygen and strontium isotopes. Chem. Geol. 170, 532 533 153-177, 2000. 534 Kump, L.R., Brantley, S.L., Arthur, M.A., Chemical weathering, atmospheric CO₂ and 535 climate. Ann. Rev. Earth Planet. Sci. 28, 611-667, 2000. Larssen, T., Carmichael, G.R., Acid rain and acidification in China: the importance of 536 537 base cation deposition. Environ. Poll. 110, 89-102, 2000. Larssen, T., Lydersen, E., Tang, D., He, Y., Gao, J., Liu, H., Duan, L., Seip, H.M., 538



539 Acid rain in China. Environ. Sci. Technol. 40, 418-425, 2006. 540 Lerman, A., Wu, L., CO₂ and sulfuric acid controls of weathering and river water composition. J. Geochem. Explor. 88, 427-430, 2006. 541 Lerman, A., Wu, L., Mackenzie, F.T., CO₂ and H₂SO₄ consumption in weathering and 542 543 material transport to the ocean, and their role in the global carbon balance. Mar. Chem. 106, 326-350, 2007. 544 545 Liu, B., Liu, C.-Q., Zhang, G., Zhao, Z.-Q., Li, S.-L., Hu, J., Ding, H., Lang, Y.-C., 546 Li., X.-D., Chemical weathering under mid- to cool temperate and monsoon-547 controlled climate: A study on water geochemistry of the Songhuajiang River 548 system, northeast China. Appl. Geochem. 31, 265-278, 2013. Liu, L., Zhang, X., Wang, S., Zhang, W., Lu, X., Bulk sulfur (S) deposition in China. 549 550 Atmos. Environ., 135, 41-49, 2016. Lu, Z., Zhang, Q., Streets, D.G., Sulfur dioxide and primary carbonaceous aerosol 551 emissions in China and India, 1996e2010. Atmos. Chem. Phys. 11, 9839-9864, 552 553 2011. Millot, R., Gaillardet, J., Dupré, B., Allègre, C.J., The global control of silicate 554 555 weathering rates and the coupling with physical erosion: new insights from rivers of the Canadian Shield. Earth Planet. Sci. Lett. 196, 83-98, 2002. 556 557 Millot, R., Gaillardet, J., Dupré, B., Allègre, C.J., Northern latitude chemical weathering rates: clues from the Mackenzie River Basin, Canada. Geochim. 558 Cosmochim. Acta 67, 1305-1329, 2003. 559 Moon, S., Chamberlain, C.P., Hilley, G.E., New estimates of silicate weathering rates 560


561 and their uncertainties in global rivers. Geochim. Cosmochim. Acta 134, 257-274, 2014. 562 Moon, S., Huh, Y., Qin, J., van Pho, N., Chemical weathering in the Hong (Red) River 563 basin: Rates of silicate weathering and their controlling factors. Geochim. 564 565 Cosmochim. Acta 71, 1411-1430, 2007. Moon, S., Huh, Y., Zaitsev, A., Hydrochemistry of the Amur River: Weathering in a 566 567 Northern Temperate Basin. Aquat. Geochem., 15, 497-527, 2009. Négrel, P., Allègre, C.J., Dupré, B., Lewin, E., Erosion sources determined by 568 569 inversion of major and trace element ratios and strontium isotopic ratios in river water: the Congo Basin Case. Earth Planet. Sci. Lett. 120, 59-76, 1993. 570 Noh, H., Huh, Y., Qin, J., Ellis, A., Chemical weathering in the Three Rivers region of 571 572 Eastern Tibet. Geochim. Cosmochim. Acta 73, 1857-1877, 2009. Oliva, P., Viers, J., Dupré B., Chemical weathering in granitic environments. Chem. 573 574 Geol. 202, 225-256, 2003. 575 Pan, Y., Wang, Y., Tang, G., Wu, D., Spatial distribution and temporal variations of atmospheric sulfur deposition in Northern China: insights into the potential 576 577 acidification risks. Atmos. Chem. Phys. 13, 1675-1688, 2013. 578 Pepin, E., Guyot, J.L., Armijos, E., Bazan, H., Fraizy, P., Moquet, J.S., Noriega, L., 579 Lavado, W., Pombosa, R. Vauchel, P., Climatic control on eastern Andean denudation rates (Central Cordillera from Ecuador to Bolivia). J. S. Am. Earth 580 Sci. 44, 85-93, 2013. 581 582 Perrin, A.-S., Probst, A., Probst, J.-L., Impact of nitrogenous fertilizers on carbonate

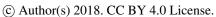
583	dissolution in small agricultural catchments: Implications for weathering CO ₂
584	uptake at regional and global scales. Geochim, Cosmochim. Acta 72, 3105-
585	3123, 2008.
586	Probst, A., Gh'mari, A.El., Aubert, D., Fritz, B., McNutt, R., Strontium as a tracer of
587	weathering processes in a silicate catchment polluted by acid atmospheric
588	inputs, Strengbach, France. Chem. Geol. 170, 203-219, 2000.
589	Raymo, M.E., Ruddiman, W.F., Tectonic forcing of late Cenozoic climate. Nature 359,
590	117-122, 1992.
591	Reuss, J.O., Cosby, B.J., Wright, RF., Chemical processes governing soil and water
592	acidification. Nature 329, 27-32, 1987.
593	Roy, S., Gaillardet, J., Allègre, C.J., Geochemistry of dissolved and suspended loads
594	of the Seine river, France: anthropogenic impact, carbonate and silicate
595	weathering. Geochim. Cosmochim. Acta 63, 1277-1292, 1999.
596	Ryu, J.S., Lee, K.S., Chang, H.W., Shin, H.S., Chemical weathering of carbonates and
597	silicates in the Han River basin, South Korea. Chem. Geol. 247, 66-80, 2008.
598	Semhi, K., Amiotte Suchet, P., Clauer, N., Probst, JL., Impact of nitrogen fertilizers
599	on the natural weathering-erosion processes and fluvial transport in the Garonne
600	basin. Appl. Geochem. 15 (6), 865-874, 2000.
601	Shi, C., Chemical characteristics and weathering of rivers in the Coast of Southeast
602	China (PhD Thesis). Institute of Geology and Geophysics, Chinese academy of
603	sciences, Beijing, China. Pp, 1-100 (in Chinese with English abstract), 2014.
604	Shin, WJ., Ryu, JS., Park, Y., Lee, KS., Chemical weathering and associated CO ₂

- 605 consumption in six major river basins, South Korea. Geomorphology 129, 334-
- 606 341, 2011.
- Shu, L.S., Zhou, X.M., Deng, P., Wang, B., Jiang, S.Y., Yu, J.H., Zhao, X.X., 607
- Mesozoic tectonic evolution of the Southeast China Block: New insights from 608
- 609 basin analysis. Journal of Asian Earth Sciences 34(3), 376-391, 2009.
- Spence, J., Telmer, K., The role of sulfur in chemical weathering and atmospheric 610
- CO_2 fluxes: Evidence from major ions, $\delta^{13}C_{DIC}$, and $\delta^{34}S_{SO4}$ in rivers of the 611
- Canadian Cordillera. Geochim. Cosmochim. Acta 69, 5441-5458, 2005. 612
- U.S. Nat. Res. Council Comm., Basic Research Opportunities in Earth Science. 613
- 614 Washington, DC: Nat. Acad. 154 pp., 2001.
- Viers, J., Dupré, B., Braun, J.J., Freydier, R., Greenberg, S., Ngoupayou, J.N., 615
- 616 Nkamdjou, L.S., Evidence for non-conservative behavior of chlorine in humid
- tropical environments. Aquat. Geochem. 7, 127-154, 2001. 617
- Vries, W.D., Reinds, G.J. Vel E., Intensive monitoring of forest ecosystems in Europe. 618
- 619 2-Atmospheric deposition and its impacts on soil solution chemistry. For. Ecol.
- 620 Manage. 174, 97-115, 2003.
- 621 Wang, T.J., Jin, L.S., Li, Z.K., Lam K.S., A modeling study on acid rain and
- 622 recommended emission control strategies in China. Atmos. Environ. 34, 4467-
- 623 4477, 2000.
- West, A.J., Galy, A., Bickle, M., Tectonic and climatic controls on silicate weathering. 624
- Earth Planet. Sci. Lett. 235, 211-228, 2005. 625
- Wu, W., Zheng, H., Yang, J., Luo, C., Zhou, B., Chemical weathering, atmospheric 626

Manuscript under review for journal Biogeosciences

Discussion started: 20 March 2018

© Author(s) 2018. CC BY 4.0 License.



627 CO₂ consumption, and the controlling factors in a subtropical metamorphic-628 hosted watershed. Chem. Geol. 356, 141-150, 2013. Xiang, L., Study on Coupling between Water and Carbon of Artificial Forests 629 Communities in Subtropical Southern China. Master Dissertation, Institute of 630 631 Geographical Sciences and Natural Sources, Chinese Academy of Sciences, 632 China (in Chinese), 2006. 633 Xu, H., Bi, X-H., Feng, Y-C., Lin, F-M., Jiao, L., Hong, S-M., Liu, W-G., Zhang, X.-634 Y., Chemical composition of precipitation and its sources in Hangzhou, China. 635 Environ. Monit. Assess. 183:581-592, 2011. 636 Xu, Z., Liu, C.-Q., Chemical weathering in the upper reaches of Xijiang River draining the Yunnan-Guizhou Plateau, Southwest China. Chem. Geol. 239, 83-637 638 95, 2007. Xu, Z., Liu, C.-Q., Water geochemistry of the Xijiang basin rivers, South China: 639 Chemical weathering and CO₂ consumption. Appl. Geochem. 25, 1603-1614, 640 641 2010. Yoshimura, K., Nakao, S., Noto, M., Inokura, Y., Urata, K., Chen, M., Lin, P.W., 642 643 Geochemical and stable isotope studies on natural water in the Taroko Gorge karst area, Taiwan - chemical weathering of carbonate rocks by deep source 644 CO₂ and sulfuric acid. Chem. Geol. 177, 415–430, 2001. 645 Zhang, M., Wang, S., Wu, F., Yuan, X., Zhang, Y., Chemical compositions of wet 646 precipitation and anthropogenic influences at a developing urban site in 647 southeastern China. Atmos. Res. 84, 311-322, 2007a. 648

Biogeosciences Discuss., https://doi.org/10.5194/bg-2018-109 Manuscript under review for journal Biogeosciences

Discussion started: 20 March 2018

649	Zhang, S.R., Lu, X. X., Higgitt, D. L., Chen, C.T.A., Sun, HG., Han, J.T., Water
650	chemistry of the Zhujiang (Pearl River): Natural processes and anthropogenic
651	influences. J. Geophys. Res. 112, F01011, 2007b.
652	Zhao, W., An analysis on the changing trend of acid rain and its causes in Fujian
653	Province. Fujian Geogr. 19, 1-5 (in Chinese), 2004.
654	Zhou, X.M., Li, W.X., Origin of Late Mesozoic igneous rocks in Southeastern China:
655	Implications for lithosphere subduction and underplating of mafic magmas.
656	Tectonophysics 326(3-4), 269-287, 2000.
657	Zhou, X.M., Sun, T., Shen, W.Z., et al., Petrogenesis of Mesozoic granitoids and
657	Zhou, X.M., Sun, T., Shen, W.Z., et al., Petrogenesis of Mesozoic granitoids and volcanic rocks in South China: A response to tectonic evolution. Episodes 29(1),
658	volcanic rocks in South China: A response to tectonic evolution. Episodes 29(1),
658 659	volcanic rocks in South China: A response to tectonic evolution. Episodes 29(1), 26-33, 2006.

Table 1 Chemical and carbon isotopic compositions of river waters in the Southeast Coastal Rivers Basin (SECRB) of China.

Rivers	Sample	Date	pH	T	EC	Na ⁺	K^{+}	Mg^{2+}	Ca ²⁺	F	Cl	NO ₃	SO ₄ ²	HCO ₃	SiO_2	TZ+	TZ-	NICB	$\delta^{13}C$	TDS
	number	(M/D/Y)		$^{\circ}\!\mathbb{C}$	μs cm ⁻¹	$\mu \boldsymbol{M}$	μΜ	$\mu \boldsymbol{M}$	$\mu E q$	μEq	%	‰	mg 1							
Qiantang R.	1	07-8-10	7.42	28.78	190	347	197	106	473	12.0	303	62.6	147	1130	148	1703	1789	-5.0	-19.0	144
	2	07-9-10	7.60	23.84	146	87.5	204	80.9	496	11.7	75.2	124	121	907	156	1446	1348	6.7	-19.8	119
	3	07-9-10	7.37	27.83	308	555	233	208	698	41.8	312	223	437	1170	170	2601	2579	0.9	-17.8	204
	4	07-10-10	7.27	26.28	177	176	135	116	544	15.7	151	142	170	985	175	1632	1618	0.8	-19.3	135
	5	07-10-10	7.05	24.15	123	130	101	66.2	349	17.7	94.3	124	157	529	169	1061	1061	0.0	-18.7	91.2
	6	07-10-10	7.24	23.75	140	97.6	69.7	81.0	451	20.0	62.1	109	204	703	164	1231	1282	-4.2	-21.3	106.6
	7	07-11-10	7.40	23.23	107	92.5	70.5	68.3	327	14.9	74.9	104	147	486	156	954	960	-0.6	-21.0	82.2
	8	07-11-10	7.16	27.61	281	361	87.5	128	469	26.8	245	191	239	810	179	1642	1724	-5.0	-12.9	137.
	9	07-11-10	7.02	26.48	140	275	120	60.7	319	36.2	199	150	180	437	236	1155	1146	0.8	-13.9	100.2
	10	07-12-10	7.05	24.24	99	205	114	58.3	285	14.6	191	114	132	305	278	1005	874	13.1	-20.9	85.4
	11	07-12-10	7.05	27.01	102	123	133	49.8	284	18.6	86.5	123	144	377	183	924	874	5.4	-19.2	79.4
	12	07-12-10	7.99	24.18	260	50.0	85.4	212	993	-	66.8	153	235	1822	172	2546	2512	1.4	-17.6	205.2
	13	07-12-10	7.86	24.59	231	43.5	88.4	189	859	-	55.1	97.6	169	1763	170	2228	2253	-1.1	-18.7	185.4
	14	07-12-10	7.69	22.66	131	44.1	81.0	113	458	-	19.1	95.2	107	920	143	1266	1248	1.4	-18.1	106.8
	15	07-12-10	7.65	24.48	106	61.1	98.3	87.9	335	-	37.2	68.3	112	663	164	1005	992	1.4	-18.6	87.3
	16	07-12-10	7.46	23.68	125	64.3	108	117	406	-	25.9	75.0	174	687	164	1218	1136	6.7	-20.0	98.8
	17	07-13-10	7.33	24.08	139	59.8	116	136	429	-	29.6	80.4	209	752	162	1305	1281	1.9	-20.8	108.
	18	07-10-10	7.27	25.74	141	163	114	69.6	396	27.3	126	148	161	597	153	1209	1195	1.1	-21.0	101.0
Cao'e R.	19	07-16-10	7.17	22.27	108	212	86.3	69.4	183	5.1	151	148	114	384	216	803	912	-13.5	-21.2	79.1
	20	07-16-10	7.06	26.57	182	401	77.6	145	275	18.3	269	185	245	534	215	1318	1478	-12.2	-20.5	116.9
	21	07-16-10	7.14	27.26	171	333	91.3	164	362	18.1	224	194	207	658	225	1475	1490	-1.0	-20.9	123.3
	22	07-16-10	7.08	27.17	173	346	94.4	168	364	18.8	247	200	211	656	222	1506	1526	-1.3	-13.0	125.2
Ling R.	23	07-15-10	7.07	24.14	52	164	42.9	34.9	140	4.9	40.7	61.5	68.3	277	190	558	516	7.6	-12.8	52.1
	24	07-15-10	7.02	26.04	74	169	92.0	34.2	150	6.4	87.0	77.3	92.8	272	196	629	622	1.1	-20.8	59.5
	25	07-16-10	7.34	25.03	92	159	80.1	47.3	235	19.3	78.0	71.4	105	455	187	804	815	-1.4	-22.5	73.9
	26	07-16-10	7.40	26.75	113	216	77.8	57.1	249	20.2	133	90.0	115	494	196	905	946	-4.5	-12.7	82.8
	27	07-16-10	7.39	26	89	174	86.4	56.4	209	9.0	99.3	78.4	99.9	420	199	792	798	-0.8	-14.0	72.7
	28	07-15-10	6.79	22.33	75	159	82.7	44.1	143	-	107	61.8	83.4	306	144	616	641	-4.1	-21.1	56.5
	29	07-15-10	8.24	27.15	129	228	92.1	83.1	317	17.2	177	90.5	120	641	194	1120	1148	-2.5	-19.2	97.8
Ou R.	30	07-13-10	8.08	28.45	48	95.2	107	38.4	92.1	15.2	31.8	43.3	47.4	291	221	463	461	0.4	-21.7	50.6
	31	07-13-10	6.71	22.97	32	60.7	106	12.6	65.0	10.8	28.9	45.0	48.9	158	169	322	329	-2.2	-23.8	36.9
	32	07-13-10	7.18	27.59	73	107	127	36.2	175	4.3	57.1	111	92.0	283	210	655	634	3.2	-23.4	62.9
	33	07-13-10	6.94	24.2	44	76.9	112	20.0	99.1	10.9	27.9	63.1	58.6	249	184	427	457	-7.0	-22.5	47.5
	34	07-14-10	7.16	27.45	90	187	127	41.2	199.5	17.0	85.6	102	116	367	251	796	787	1.1	-22.4	76.5
	35	07-14-10	6.97	24.56	54	105	50.9	29.2	122	12.2	46.1	67.8	73.1	218	193	460	478	-4.1	-22.5	47.9
	36	07-14-10	6.82	21.12	31	76.4	133	12.7	74.5	7.7	20.7	36.8	49.1	192	162	383	348	9.3	-	39.5
	37	07-14-10	6.82	23.69	45	89.5	105	19.0	97.8	10.6	39.6	52.8	59.1	231	185	428	441	-3.0	-22.9	46.2
	38	07-15-10	6.92	24.69	37	100	89.3	21.1	49.7	1.7	36.9	45.5	52.7	153	202	331	341	-2.9	-	38.9
	39	07-15-10	6.90	23.86	35	92.2	92.0	19.8	61.4	1.9	43.9	47.9	55.5	139	193	347	342	1.4	-22.3	38.5
	40	07-15-10	7.09	25.56	47	117	112	25.7	83.4	8.0	52.4	63.1	57.4	232	193	447	462	-3.3	-22.5	48.1
	41	07-14-10	6.97	24.25	53	102	107	27.6	119	13.4	43.5	59.4	73.2	277	183	502	526	-4.9	-13.7	52.3

Biogeosciences Discuss., https://doi.org/10.5194/bg-2018-109 Manuscript under review for journal Biogeosciences Discussion started: 20 March 2018 © Author(s) 2018. CC BY 4.0 License.

Eairnin D	42	07 17 10	7 29 25 10	20	04.0	017	24.0	75.6	11.4	50.0	157	51.0	140	151	275	250	15		27.2
Feiyun R.	42		7.28 25.19	38								51.9		151	375	358	4.5	- 22.7	37.2
Jiaoxi R.	43 44		7.08 25.61 7.52 26.92	46 47			33.9 25.2		4.0	66.2		25.0	223 226	151 151	435 432	450 430		-23.7 -23.4	
JIAOXI K.	45		7.45 27.46	61			34.2		4.1		59.8		238	184	548	542		-23.4	
	46		6.90 27.66	53			33.4		7.0		93.1		209	177	471			-14.4	
Huotong																			
R.	47		7.34 24	43								20.1		190	364			-22.8	
Ao R.	48	07-19-10	7.24 31.44	124		121	102	209	24.3		73.6		717					-19.4	
	49	07-19-10	7.13 27.82	46			30.0		-		51.3		234	236	413	402	2.6	-	46.2
	50		6.98 28.65	53				100			58.6		294	233	511	477		-22.3	
Min R.	51	07-27-10	7.11 28.4	42			40.5			43.9			382	182	526	513		-19.4	
	52	07-27-10	7.17 30	51			41.7			29.4			350	221	496	495	0.2	-	53.3
	53	07-27-10	7.08 29.4	99		92.7		126		50.1		118	327	154	651	654		-20.8	
	54	07-27-10	7.06 29.1	44		99.6		114		18.7			305	265	491	449		-17.6	
	55	07-27-10	7.42 29.4	57		93.7		113		67.1			384	236	558	561		-16.4	
	56	07-27-10	7.12 27.8	51		91.0		106		82.8			249	225	507	494	2.5	- 21.1	51.3
	57	07-27-10	7.08 27.5	40						43.6			288	211	457	435		-21.1 -11.4	
	58 59	07-27-10 07-27-10	6.99 27.2	52 59						87.1			277	228	535	542		-11.4	
	60	07-27-10	6.87 29 7.31 27.1	78				124 181					272 355	222	612 682	563 672		-20.3	
	61	07-27-10	7.31 27.1	37			52.8						288	202	596	597		-18.7	
	62	07-27-10	7.16 28.1	58			59.3						294	214	632	599		-13.4	
	63	07-27-10	7.26 28.3	87		86.1				48.0			347	226	729	707		-21.4	
	64	07-27-10	7.20 28.3	87		93.1		195		59.8			480	232	729	743		-11.0	
	65	07-28-10	6.97 27.9	37			52.2						306	221	630	632	-0.2	-11.0	61.9
	66	07-13-10	7.07 27.96	59				127					249	228	535	515	3.8	_	54.8
	67	07-28-10	7.12 29.7	38			45.9			48.3			368	220	560	564	-0.7		57.7
	68	07-27-10	7.03 29.9	62			57.6			81.6			374	203	635	641		-12.4	
	69	07-27-10	7.01 28.8	60			73.6					32.7	417	233	615	607		-21.0	
	70	07-27-10	7.06 26.5	37			34.7		-		34.8		312	222	431	448		-13.1	
	71	07-27-10	7.09 26.5	25			27.0		4.7		18.6		191	154	332	318		-16.0	
	72	07-28-10	7.07 30.1	39			35.1					35.5		175	409			-19.4	
	73	07-27-10	7.01 28.7	47								57.2		211	506	531	-4.8	_	53.8
	74	07-27-10	6.85 28.7	50	93.6							57.0		217	498	487	2.2	-19.9	50.9
	75	07-27-10	7.11 29.7	69	117	85.2	73.4			63.7			418	230	666	652	2.2	-22.2	65.0
	76	07-28-10	6.93 28.9	59	112	88.0	61.8	122	6.0	57.4	89.3	42.0	349	224	568	580	-2.2	-22.0	58.8
	77	07-21-10	7.76 32.4	51.2	163	85.5	52.8	151	20.2	55.3	70.3	78.6	372	175	656	655	0.3	-12.5	61.8
	78	07-28-10	7.29 26.8	106	129	75.3	84.0	321	24.0	56.2	41.0	166	599	202	1013	1028	-1.4	-16.3	90.3
	79	07-21-10	7.09 26.96	56	112	87.6	37.1	129	4.5	51.5	44.9	61.9	327	276	531	547	-2.9	-22.2	59.1
	80	07-21-10	7.64 33.37	83	114	96.2	60.6	151	16.7	53.0	40.6	102	371	242	633	670	-5.8	-12.8	66.2
	81	07-21-10	7.83 31.27	65	131	102	52.7	141	16.1	45.3	49.7	91.8	324	239	620	603	2.8	-13.4	61.8
	82	07-21-10	6.84 28.35	66	132	101	52.5	141	5.8	63.8	54.1	91.6	304	243	621	606	2.5	-22.7	61.5
	83	07-21-10	7.42 30.7	98	217	113	59.2	210	18.4	98.7	63.5	84.7	496	320	868	827	4.6	-18.9	84.5
	84	07-27-10	7.26 26.3	46	104	102	29.7	121	3.6	55.2	51.9	55.5	294	193	507	512	-0.9	-21.6	51.9
	85	07-27-10	7.07 25.4	30	73.3	99.2	19.6	78.8	-	22.9	40.0	49.2	203	170	369	365	1.3	-21.1	39.8
	86	07-27-10	7.50 27.3	45	102	102	26.5	114	2.4	35.1	39.7	57.2	260	217	484	449	7.3	-15.7	49.6
	87	07-27-10	7.47 26.9	51	141	100	43.6	109	7.9	79.7	42.4	57.7	311	217	547	548	-0.3	-20.1	55.6

Biogeosciences Discuss., https://doi.org/10.5194/bg-2018-109 Manuscript under review for journal Biogeosciences Discussion started: 20 March 2018 © Author(s) 2018. CC BY 4.0 License.

	88	07-19-10	7.99 31.74	63	167	96.5	33.5	115	8.0	105	35.5	38.1	331	218	561	548	2.3	-13.5	55.9
	89	07-21-10	6.77 28.19	65	132	93.6	56.0	145	15.6	60.6	78.8	75.4	333	243	627	624	0.5	-22.6	63.3
Jin R.	90	07-27-10	7.36 25.8	128	126	94.8	88.9	406	22.9	51.4	39.4	229	595	208	1211	1143	5.6	-20.7	100
	91	07-27-10	7.40 26.9	123	143	103	82.7	347	21.0	83.5	203	182	463	226	1105	1115	-0.9	-21.3	98.4
	92	07-27-10	7.00 27.4	88	170	98.8	56.8	205	7.2	137	117	106	327	205	793	792	0.1	-22.5	71.8
	93	07-27-10	7.32 28.7	73	201	116	87.1	318	20.0	93.5	41.5	189	508	267	1128	1020	9.6	-21.7	95.3
Jiulong R.	94	07-30-10	6.50 23.47	29	72.3	92.4	22.8	59.8	12.4	25.1	27.0	50.0	189	213	330	341	-3.4	-18.1	40.1
	95	07-30-10	7.06 29.35	120	136	96.9	106	339	5.1	67.7	66.3	249	469	202	1124	1100	2.1	-20.8	94.2
	96	07-30-10	7.45 27.6	104	79.5	97.5	106	363	14.4	70.7	50.0	99.9	729	184	1116	1049	6.0	-18.9	93.7
	97	07-31-10	7.36 26.59	139	140	100	142	432	15.5	79.6	78.3	274	573	196	1388	1278	8.0	-19.7	108.8
	98	07-31-10	7.72 26.18	88	77.6	96.2	69.0	313	19.9	39.7	34.6	63.8	731	251	938	933	0.5	-18.4	89.4
	99	07-30-10	7.43 26.96	119	200	93.8	100.2	298	19.9	122	80.5	225	387	202	1091	1040	4.7	-20.5	89.5
	100	07-28-10	7.41 26.66	112	173	97.9	94.4	286	46.1	118	152	201	364	207	1033	1036	-0.3	-20.9	92.2
	101	07-29-10	7.16 29.35	82	151	110	55.4	178	4.9	71.2	170	53.2	385	305	727	732	-0.7	-21.2	76.1
	102	07-29-10	7.10 28.9	100	222	98.3	49.4	249	3.6	126	157	52.7	532	303	917	920	-0.3	-21.7	90.0
	103	07-28-10	7.20 31.15	138	339	111	81.2	277	9.2	280	285	88.6	515	317	1165	1256	-7.8	-19.0	112
	104	07-28-10	7.16 27.09	101	261	95.8	81.7	235	40.3	173	80.1	174	291	136	990	892	9.9	-24.3	75.4
Zhang R.	105	07-28-10	8.08 30.6	93	195	96.1	61.1	167	16.8	157	193	55.2	281	288	748	741	0.9	-21.5	73.8
Dongxi R.	106	07-28-10	7.20 30.9	78	263	99.0	41.5	115	14.5	238	65.3	30.0	283	309	675	646	4.4	-20.8	66.7
Huangang R.	107	07-28-10	7.40 30.5	99	253	85.6	53.0	154	7.7	190	63.5	56.4	460	278	754	827	-9.6	-20.0	77.4
Han R.	108	07-31-10	7.31 27.1	68	136	61.5	45.2	195	16.1	37.7	45.3	93.7	345	218	678	615	9.2	-21.9	62.0
	109	07-30-10	7.38 26.94	88	116	103	63.6	265	6.4	53.4	72.2	84.9	584	244	876	879	-0.4	-20.4	83.7
	110	07-30-10	6.66 25.55	71	114	96.2	47.6	168	8.0	56.9	54.6	143	230	203	642	628	2.2	-17.9	59.7
	111	07-30-10	6.66 27.76	83	135	104	63.8	203	8.6	54.5	74.9	173	302	336	774	777	-0.4	-20.6	78.7
	112	07-30-10	7.31 30.81	56	168	74.0	39.1	118	13.5	62.9	44.4	81.4	237	245	556	507	8.8	-21.4	54.6
	113	07-31-10	7.28 28.73	98	137	99.3	85.6	270	9.2	88.8	59.1	118	565	233	948	949	-0.1	-19.7	86.6
	114	07-31-10	7.27 31.42	123	193	105	98.2	319	20.7	120	102	157	570	229	1132	1107	2.2	-19.7	98.2
	115	07-30-10	7.43 29.89	85	115	97.5	65.5	244	6.5	46.5	58.6	103	511	251	832	822	1.1	-20.8	79.3
	116	07-31-10	7.61 30.98	99	123	104	85.9	264	5.6	58.8	90.9	108	588	98	926	952	-2.9	-20.0	79.4
	117	07-31-10	7.31 29.96	93	151	103	78.1	250	15.4	68.0	99.1	173	379	233	909	891	1.9	-21.9	81.8
	118	07-31-10	7.35 28.4	2	233	84.2	101	323	12.8	84.0	101	203	460	229	1165	1051	9.8	-21.1	94.7
	119	07-31-10	7.67 30.38	93	136	87.8	73.6	231	16.4	64.6	94.4	184	382	226	834	909	-9.1	-20.8	80.5
Rong R.	120	07-30-10	7.57 31.83	68	193	79.1	50.3	146	16.4	192	84.0	31.5	344	309	664	683	-2.8	-20.3	65.8
	121	07-30-10	6.96 30.62	94	509	103	56.1	213	15.9	511	78.5	82.3	379	222	1150	1133	1.5	-20.0	94.4

Table 2 Chemical compositions of precipitation at different sites located within the studied area (in μ mol/l and molar ratio).

Province	Location	pН	F	Cl-	NO ₃	SO ₄ ²	NH ₄ ⁺	K ⁺	Na ⁺	Ca ²⁺	Mg^{2+}	NO ₃ /Cl	SO ₄ /Cl	K/Cl	Na/Cl	Ca/Cl	Mg/Cl	Referenc e
Zhejiang	Hangzhou	4.5	5.76	13.9	38.4	55	79.9	4.18	12.2	26	3.53	2.76	3.96	0.3	0.88	1.87	0.25	Xu et al., 2011
	Jinhua	4.54	9.05	8.51	31.2	47.6	81.1	4.73	6.27	24	1.73	3.67	5.59	0.56	0.74	2.81	0.2	Zhang et al., 2007
Fujian	Nanping	4.81	0.8	5.8	26.6	18.3	38	4.9	5.4	12.9	2.7	4.59	3.16	0.84	0.93	2.22	0.47	Cheng et al., 2011
	Fuzhou		5.26	21.4	24.9	48.5	78.1	4.1	2.61	32.7	1.25	1.16	2.26	0.19	0.12	1.53	0.06	Zhao, 2004
	Xiamen	4.57	15.3	23.7	22.1	31.3	37.7	3.58	36.1	21.5	4.94	0.93	1.32	0.15	1.52	0.91	0.21	Zhao, 2004
Average												2.62	3.26	0.41	0.84	1.87	0.24	

Table 3 Contribution of each reservoir, fluxes, chemical weathering and associated CO_2 consumption rates for the major rivers and their main tributaries in the SECRB.

Major river Tributaries Location		Discharge	Area	Runoff	Cont (%)	ributi	on		Fluxes (10 ⁶ tor		Weath (ton kr	ering ra n ⁻² a ⁻¹)	te			onsumpt ol km ⁻²	tion rate a ⁻¹)	
			$10^9m^3a^{\text{-}1}$	$10^3\mathrm{km}^2$	mm a ⁻¹	Rain	Antl	ı. Sil.	Carb.	SWF C	CWF	Cat_{sil}^{a}	SWR^b	CWR ^b	TWR^{b}	CSW^{c}	CCWc	$SSW^{\text{\scriptsize d}}$
Qiantang		Fuyang	33.6	38.32	877	9	14	23	54	0.51 1	.33	5.2	13.3	34.8	48.0	171	352	150
	Fenshui	Tonglu	3.13	3.43	913	7	14	18	62	0.05 0	.19	5.7	15.3	54.1	69.3	173	550	158
Cao'e		Shangyu	4.53	5.092	890	7	23	26	44	0.10 0	.19	7.0	18.9	36.7	55.5	279	383	249
Ling		Linhai	5.4	6.613	817	9	22	24	45	0.09 0	.17	4.7	14.2	26.1	40.3	167	267	143
Ou		Wenzhou	18.11	18.1	1001	20	6	56	18	0.32 0	.12	6.6	17.6	6.5	24.0	235	66	148
	Songyang	Longli	2.03	1.995	1018	16	8	46	30	0.04 0	.03	7.1	19.9	13.6	33.5	240	137	176
	Xiaoxi	Qingtian	3.98	3.405	1169	23	0	74	4	0.07 0	.00	8.7	20.1	1.4	21.5	298	14	154
	Nanxi	Huangtian	2.85	2.49	1145	21	9	63	7	0.05 0	.01	8.1	21.3	2.6	24.0	292	27	162
Jiaoxi		Saiqi	4.0	5.638	709	20	30	26	23	0.06 0	.03	2.4	10.0	5.4	15.4	67	57	32
Huotong		Badu	1.804	2.244	804	22	18	54	5	0.03 0	.00	4.0	13.2	1.0	14.2	147	12	62
Ao		Lianjiang	2.77	3.17	874	17	17	48	17	0.05 0	.02	5.1	17.3	5.4	22.7	188	56	122
Min		Minhou	60.55	60.99	993	15	10	48	27	1.29 0	.67	6.6	21.1	11.0	32.1	250	115	187
	Futun	Nanping	14.2	13.733	1034	15	14	49	22	0.29 0	.13	7.0	20.8	9.4	30.2	268	100	195
	Shaxi	Qingzhou	11.16	11.793	946	13	9	42	36	0.23 0	.19	6.1	19.3	15.8	35.1	230	162	182
	Jianxi	Daheng	16.4	16.396	1000	16	10	45	29	0.31 0	.17	5.7	19.1	10.4	29.5	208	110	148
	Youxi	Youxikou	4.621	5.436	850	15	8	46	31	0.10 0	.06	5.4	17.7	10.8	28.5	197	113	148
	Dazhangxi	Minhou	4.758	4.843	982	15	21	47	17	0.09 0	.03	6.2	19.1	6.7	25.8	228	69	153
Jin		Nan'an	3.65	3.101	1177	9	10	40	41	0.09 0	.11	10.8	29.6	34.4	64.0	417	351	363
	Dongxi	Honglai	1.4	1.917	730	12	22	28	38	0.02 0	.03	3.8	12.7	14.3	27.0	126	146	99
Jiulong		Longhai	14.07	14.741	954	12	22	35	31	0.22 0	.28	7.1	14.8	19.1	34.0	277	198	212
	Beixi	Shajian	9.28	9.64	963	13	14	28	45	0.17 0	.26	5.8	17.8	27.2	45.0	211	281	168
	Xi'xi	Zhangzhou	ı 3.657	3.74	978	10	32	25	33	0.09 0	.09	6.6	25.2	25.3	50.5	236	260	186
Zhang		Yunxiao	1.01122	1.038	974	16	25	29	29	0.02 0	.01	5.1	21.9	14.1	36.0	174	146	114
Dongxi		Zhao'an	0.958	1.127	850	16	41	26	17	0.02 0	.01	4.0	19.8	7.0	26.8	129	74	64
Huanggan	g	Raoping	1.637	1.621	1010	15	30	34	21	0.04 0	.02	6.0	22.8	11.1	33.9	227	115	145
Han		Chaozhou	25.4	30.112	844	16	7	38	39	0.51 0	.51	5.4	16.8	16.9	33.7	206	174	155

35

Biogeosciences Discuss., https://doi.org/10.5194/bg-2018-109 Manuscript under review for journal Biogeosciences

Discussion started: 20 March 2018 © Author(s) 2018. CC BY 4.0 License.

Dingjiang	g Chayang	11.5	11.802	974	17	6	46	32	0.32 0.18	7.2	26.9	15.4	42.3	275	158	201
Rong	Jieyang	3.11	4.408	706	10	55	11	24	0.05 0.07	2.6	12.0	14.8	26.8	67	152	46
Whole SECRB		270	287	939					5.23 4.90	6.0	18.2	17.1	35.3	222	176	167

^a Cat_{sil} are calculated based on the sum of cations from silicate weathering.

^b SWR, CWR and TWR represent silicate weathering rates (assuming all dissolved silica is derived from silicate weathering), carbonate weathering rates and total weathering rates, respectively.

 $^{^{\}rm c}$ CO₂ consumption rate with assumption that all the protons involved in the weathering reaction are provided by carbonic acid.

^d Estimated CO₂ consumption rate by silicate weathering when H₂SO₄ originating from acid precipitation is taken into account.

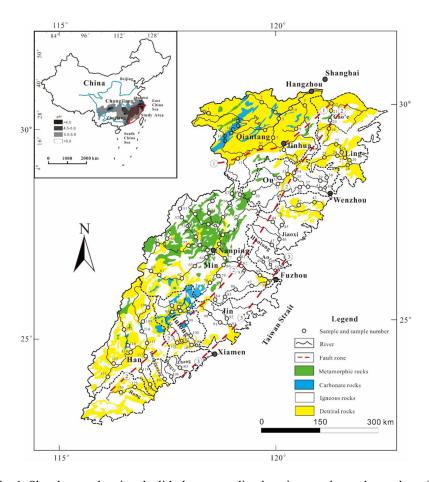


Fig. 1. Sketch map showing the lithology, sampling locations, and sample number of the SECRs drainage basin, and regional rain water pH ranges are shown in the sketch map at the upper-left. (modified from Zhou and Li, 2000; Shu et al., 2009; Xu et al., 2016, rain water acidity distribution of China mainland is from State Environmental Protection Administration of China). ①Shaoxing-Jiangshan fault zone; ②Zhenghe-Dapu fault zone; ③Changle-Nanao fault zone. The figure was created by CorelDraw software version 17.1.

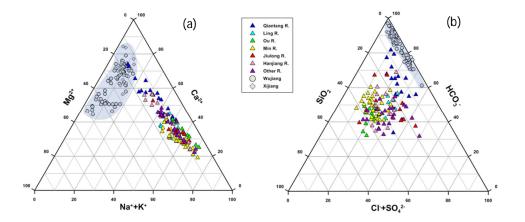


Fig. 2. Ternary diagrams showing cations (a), anions and dissolved SiO₂ (b) compositions of river waters in the SECRB. Chemical compositions from case studies of rivers draining carbonate rocks are also shown for comparison (data from Han and Liu 2004; Xu and Liu 2007, 2010)

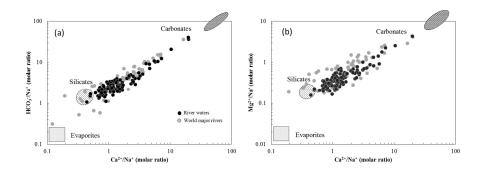


Fig. 3. Mixing diagrams using Na-normalized molar ratios: HCO₃-/Na⁺ vs. Ca²⁺/Na⁺ (a) and Mg²⁺/Na⁺ vs. Ca²⁺/Na⁺ (b) for the SECRB, showing a mixing line between silicate and carbonate end-members. Data for world major rivers are also plotted for comparison (data from Gaillardet et al. 1999).

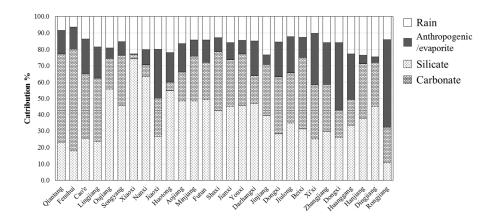


Fig. 4. Calculated contributions (in %) from the different reservoirs to the total cationic load for major rivers and their main tributaries in the SECRB. The cationic load is equal to the sum of Na⁺, K⁺, Ca²⁺ and Mg²⁺ from the different reservoirs.

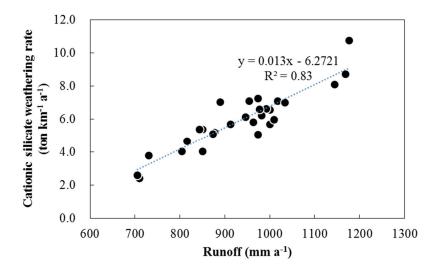


Fig. 5. Plots of the cationic-silicate weathering rate (Cat_{sil}) *vs.* runoff for the SECRB, showing that runoff has a strong control on chemical weathering rates of silicates.

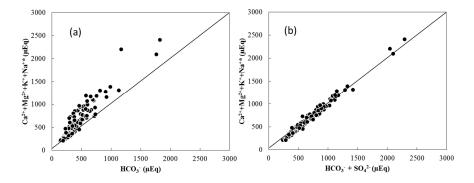


Fig. 6. Plots of total cations derived from carbonate and silicate weathering vs. HCO₃⁻ (a) and HCO₃⁻+SO₄²⁻ (b) for river waters in the SECRB.

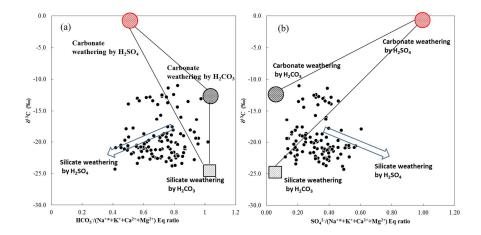


Fig. 7. $\delta^{13}C_{DIC}$ vs. HCO₃/(Na*+K+Ca+Mg) (a) and SO₄/(Na*+K+Ca+Mg) Eq ratio (b) in river waters draining the SECRB. The plot show that most waters deviate from the three endmember mixing area (carbonate weathering by carbonic acid and sulfuric acid and silicate weathering by carbonic acid), illustrating the effect of sulfuric acid on silicate weathering.